

Pixel-Based Methods for Widget State and Style
in a Runtime Implementation of Sliding Widgets

 Morgan Dixon1, Gierad Laput1,2, James Fogarty1

1 Computer Science & Engineering
DUB Group, University of Washington
 {mdixon,jfogarty}@cs.washington.edu

2 Human-Computer Interaction Institute
Carnegie Mellon University

gierad.laput@cs.cmu.edu

ABSTRACT
Pixel-based methods offer unique potential for modifying
existing interfaces independent of their underlying
implementation. Prior work has demonstrated a variety of
modifications to existing interfaces, including accessibility
enhancements, interface language translation, testing
frameworks, and interaction techniques. But pixel-based
methods have also been limited in their understanding of
the interface and therefore the complexity of modifications
they can support. This work examines deeper pixel-level
understanding of widgets and the resulting capabilities of
pixel-based runtime enhancements. Specifically, we present
three new sets of methods: methods for pixel-based
modeling of widgets in multiple states, methods for
managing the combinatorial complexity that arises in
creating a multitude of runtime enhancements, and methods
for styling runtime enhancements to preserve consistency
with the design of an existing interface. We validate our
methods through an implementation of Moscovich et al.’s
Sliding Widgets, a novel runtime enhancement that could
not have been implemented with prior pixel-based methods.

Author Keywords
Pixel-based runtime modification; Prefab; Sliding Widgets;
hybrid touch and mouse interaction; real-world interfaces.

ACM Classification Keywords
H.5.2. [Information interfaces and presentation]: User Interfaces;

INTRODUCTION
Pixel-based methods for runtime interface modification
offer great potential for democratizing interaction. Because
all graphical interfaces ultimately consist of pixels, these
methods enable modifying applications without their source
code and independent of their underlying toolkit
implementation. Pixel-based systems have demonstrated a
wide variety of promising enhancements to existing
interfaces, including contextual and video-based tutorials

[2,31,43], automated visualization retargeting [33],
improved window managers [39], interface testing
frameworks [7], ink annotation overlays [29], systems for
exploring document workflow histories [17], and web
content retargeting [22].

Despite the promise of pixel-based systems, they have been
limited to relatively simple overlays that primarily point at
or highlight existing elements. At least two key challenges
have limited prior enhancements: (1) modeling a widget’s
behavior, and (2) capturing an interface’s style. Structured
support for these two tasks would enable more advanced
modifications to a variety of existing interfaces.

Although current systems support the interpretation of
pixels in an individual screen capture, the behavior of
widgets in an interface is difficult to model because many
potential enhancements require an understanding of how an
interface changes across multiple frames (e.g., if a
checkbox becomes checked, if a slider thumb has moved).
In addition to monitoring these changes, more advanced
enhancements also require manipulating the interface (e.g.,
sending click events to set a checkbox, dragging a slider).
As a result, developers are faced with implementing their
own complex frame-to-frame analysis of interfaces together
with low-level input redirection mechanisms.

Capturing an interface’s style is important because many
runtime modifications do not fully alter the appearance of
an existing interface, but instead directly overlay new
elements onto the interface. Therefore it is important that
these enhancements are styled to preserve consistency with

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions@acm.org.
CHI 2014, April 26 - May 01 2014, Toronto, ON, Canada.
Copyright 2014 ACM 978-1-4503-2473-1/14/04…$15.00.
http://dx.doi.org/10.1145/2556288.2556979

Figure 1: We present new pixel-based methods for modifying
existing interfaces at runtime, and we use our methods to
explore Moscovich et al.’s Sliding Widgets in real-world
interfaces. We overlay Sliding Widgets throughout Microsoft
Windows 8, replacing standard mouse-based elements to
improve interaction with hybrid touch-and-mouse devices.

the existing interface. Without proper support for capturing
style, enhancements are likely to be jarring and unusable.

This paper addresses these limitations with novel methods
for modeling the state and capturing style of individual
widgets. Specifically, we build upon Prefab’s pixel-based
methods for interpreting interfaces [8,9,10,11]. We first
introduce methods for real-time modeling of widgets in
multiple states. We then describe methods for linking an
original widget’s state into the representation needed by a
new surface enhancement. Finally, we introduce style
mappers and show how they can be used to render entirely
new widgets in an existing interface while maintaining a
style that is consistent with the original design. We focus on
these widget-level methods because they serve as building
blocks for complex enhancements to entire interfaces.

We contextualize these contributions in an implementation
of Moscovich et al.’s Sliding Widgets, touch widgets
activated by sliding a moveable element [24]. Our
implementation dynamically overlays Sliding Widgets on
mouse-based interface elements throughout Microsoft
Windows 8. For example, Figure 1 and our associated video
present screenshots of our implementation in a variety of
popular interfaces, including Microsoft Word 2013, Adobe
Reader, Gmail in the Google Chrome Browser, and

Windows Explorer. We replace elements in these
applications using various types of Sliding Widgets,
including Sliding Buttons, Sliding Spinners, Sliding
Toggles, and Sliding Dropdown Menus. Sliding Widgets
are well beyond the capabilities of prior pixel-based
systems, and the implementation in this work informs and
validates the design of our new methods.

In addition to validating our methods, we choose to
implement Sliding Widgets in the context of existing
interfaces because the implementation could directly benefit
an emerging set of hybrid devices that support both touch
and mouse input. Examples of these devices are shown in
our associated video. Unfortunately, graphical interfaces for
hybrid devices are either difficult to use or expensive to
produce. This is because developers either: (1) provide
standard mouse-based interfaces with small and densely
arranged targets, or (2) implement an entire alternate
interface optimized for touch. We therefore explore the
approach of dynamically replacing existing mouse-based
elements with touch controls. This approach can improve
interaction with hybrid devices without the burden of
designing and implementing two entire alternate interfaces.

Figure 2 overviews our system. We first query the window
manager for images of windows, and then interpret their
elements using Prefab’s pixel-based methods [9,10,11].
Specifically, we use Prefab to recover an interface
hierarchy containing a node for each interface element
(e.g., a leaf for a text label, an inner node with children for
a button and any interior content). We walk this tree to
determine what elements to replace, and then we overlay
our Sliding Widget. To maintain a style consistent with the
source interface, our overlay renders each Sliding Widget
using elements of the pixel-level appearance, as captured by
Prefab’s prototypes. This process modifies a single frame
captured from an interface, and so we repeat this many
times per second, synchronizing each Sliding Widget with
its underlying widget. Specifically, we use state models to
monitor and manipulate underlying widgets. Transitions in
a state model cause the Sliding Widget to update its
appearance and behavior, and interaction with a Sliding
Widget generates input manipulating the underlying widget.

The specific contributions of our work include:
• Methods for pixel-based modeling of widgets in multiple

states. Specifically, we introduce abstract state models
for describing how to interpret and manipulate categories
of widgets. Abstract models are then parameterized with
pixel-level data specifying the appearance of a specific
widget in each of the modeled states.

• Methods for managing the combinatorial complexity that
arises in creating a multitude of runtime enhancements
that can apply to a multitude of widgets. Specifically, we
show how runtime enhancement can be framed in the
Model-View-Controller pattern, and we introduce linkers
for specifying how a particular runtime enhancement
relates to a particular abstract state model.

Figure 2: We build upon Prefab's methods for pixel-based
identification of interface elements. Identified elements are
replaced by overlaying a corresponding Sliding Widget. The
original widget is then modeled and manipulated using state
machine models. Finally, we style the appearance of overlaid
Sliding Widgets by mapping elements of pixel-level appearance
from Prefab's prototypes of the original interface.

• Methods for styling runtime enhancements to preserve
consistency with the design of an existing interface.
Specifically, we introduce mappers that use pixel-level
elements of an interface’s appearance to style runtime
enhancements to match that interface.

• An implementation of Sliding Widgets as a runtime pixel-based
enhancement that can be applied to existing interfaces. This
validates our new pixel-based methods and also unearths
implications for the design of Sliding Widgets and future
pixel-based runtime enhancements.

RELATED WORK
Surface-Level Runtime Modification. Runtime modification
has broad applications in accelerating innovation and
facilitating adoption. In prior work, Edwards et al. [13] and
Olsen et al. [28] modify interfaces by replacing the toolkit
drawing object and intercepting commands (e.g., draw_line,
draw_string). They update interfaces with new
functionality, such as search and bookmark widgets. More
recent examples include application mash-ups [14,18,36],
re-authoring desktop applications for mobile interfaces
[25,26], and automating repetitious interactions [5,23].

Traditional approaches to runtime modification are based in
accessibility APIs [36] or injecting into an interface’s
underlying toolkit [12,13,28]. Accessibility APIs expose
interface state, but are frequently incomplete because
application developers fail to implement the API. For
example, Hurst et al. found 25% of widgets are completely
missing from the accessibility API [21]. Injection
techniques attempt to gain full access to an interface by
inserting custom logic via the toolkit or other runtime
system. However, injection must be carefully crafted for
each interface and underlying toolkit, making it difficult to
apply to general-purpose whole-desktop enhancements like
the Sliding Widgets we pursue here. Perhaps most
importantly, both methods expose widget models, not
necessarily their on-screen view (e.g., the pixel-level
appearance of a slider thumb is intentionally encapsulated).
But understanding pixel-level appearance is a requirement
for many potential enhancements. For example, we use the
pixel-level appearance of existing widgets to style Sliding
Widgets to match the interface.

Pixel-Based Methods. Pixel-based methods do not require
cooperation from an application’s original developers and
also overcome the fragmentation of interfaces and toolkits.
Applications expose pixels as normal, and their raw pixels
are then used as a foundation for additional functionality.
Researchers have explored a variety of low-level
abstractions to enable a range of pixel-based runtime
modifications. Classic work by Zettlemoyer et al. [44,45]
examined widget identification in IBOTS and VisMap for
interface agents and programming by example [32,34].
St. Amant et al. [35] developed Segman for cognitive
modeling applications. Olsen et al.’s [29] ScreenCrayons
link interactive ink annotations to arbitrary screen elements.
Tan et al.’s [37] WinCuts interactively subdivides windows

via a copy-paste metaphor. Yeh et al.’s Sikuli [42] uses
template matching and voting based on invariant local
features to identify targets in interface scripting and testing
applications. Dixon et al.’s Prefab [9,10,11] demonstrates
real-time modification using input and output redirection
together with pixel-based reverse engineering of interface
content and structure. They also demonstrate rudimentary
pixel-based strategies for rendering interface overlays [11].
Our current work is informed by this prior research,
contributing to pixel-based methods and demonstrating
deep implementation of Sliding Widgets.

The strengths and limitations of pixel-based methods versus
application introspection motivate hybrid strategies that
combine the two approaches. For example, Chang et al. [6]
explored several synergies in PAX, including use of Sikuli
to obtain paths to elements in the accessibility API,
pixel-level analyses to locate screen-rendered text, and the
use of Sikuli to find elements in portions of the screen
where the accessibility API’s representation is incomplete.
We focus on core pixel-based methods required for state
and style, and future work could extend these to hybrid
approaches if needed for more complex or niche interfaces.

Our work presents the first general-purpose pixel-based
methods for modeling widgets in multiple states. Prior work
explores basic solutions for monitoring interface changes,
but these methods are tailored to the goals of a specific
enhancement. The most sophisticated example is Banovic
et al.’s Waken, a system for reverse engineering and
augmenting video tutorials [2]. Their system observes
changes in an interface via lightweight frame differencing,
and uses these observations to identify widgets. In contrast,
our abstract state models are capable of capturing any
transition in a widget’s appearance, and they can also
invoke transitions in a widget’s state. These capabilities
enable advanced runtime enhancements, moving beyond
the identification of widget occurrences in a frame.

This paper combines the development of new pixel-based
methods with an examination of an interaction technique in
the context of real-world interfaces. This combination
parallels the work of Dixon al. in their implementation of a
general-purpose target-aware pointing enhancement [8].
They validate novel pixel-based methods in the context of
an implementation of Grossman and Balakrishnan’s Bubble
Cursor, an area cursor that dynamically expands to always
capture the nearest target [16]. Like our Sliding Widgets
implementation, their cursor functions across the desktop,
providing an opportunity to examine its behavior in
real-world interfaces. In contrast, the Bubble Cursor only
requires the context of a single frame to interpret targets,
and it does not require deep knowledge of an element’s
style to render its overlay. Our Sliding Widgets require this
complex modeling, and we therefore advance the
state-of-the-art in pixel-based methods with new support for
modeling widgets in multiple states and for styling new
widgets to be consistent with existing interfaces.

Improving Touch Interaction. A fundamental challenge in
touch-based interaction is addressing the fat finger problem,
the ambiguity caused when a finger touches multiple
targets. Our implementation of Moscovich et al.’s Sliding
Widgets is exemplary of a large body of techniques that
also explore the problem (e.g., see [24] for an enumeration
of many techniques). Few of these techniques were
specifically designed for hybrid touch and mouse devices,
but many have explored touch support for legacy interfaces.
These include techniques designed to overcome the
occlusion of the target and selection point, such as
[3,38,40,41]. Other techniques address the ambiguity
caused by reducing a touch’s contact area down to a single
selection point, such as Pointing by Zooming and Rubbing
[1,4,30]. Although these techniques offer great potential,
many of them remain difficult to evaluate and deploy in the
context of real interfaces, due to the difficulty of modifying
existing interfaces at runtime. Thus our new pixel-based
methods offer the opportunity to better understand and
deploy techniques like these, helping researchers bridge the
gap from the lab to the field.

IDENTIFYING AND INTERPRETING ELEMENTS
We interpret interfaces using Prefab’s pixel-based methods
for reverse engineering interface structure [9,10,11].
Specifically, we use Prefab Layers and Prefab Annotations
to identify an interface hierarchy and then recover Sliding
Widget metadata for nodes in that hierarchy.

Prefab Layers structure pixel interpretation as a series of
tree transformations. The root corresponds to the processed
image, and each identified interface element is added as a
node in the tree. Each transformation might add new
elements, tag elements with metadata, or remove elements.
Transformation code is organized into layers, which can be
grouped into chains. An interface is then interpreted by
executing a layer chain: the raw image is passed into the
first layer, then the output of each layer is passed into the
next. Developers reuse and compose existing functionality
by concatenating layer chains.

Prefab Annotations support robust annotation of interface
elements with metadata that has been inferred, provided by
a developer, or collected from end-users of pixel-based
enhancements. More concretely, an annotation stores
metadata to be applied to a node in a recovered hierarchy.
For example, Figure 2's green node has been annotated with
metadata indicating it should be replaced with a Sliding
Button. Collections of annotations are stored in libraries
that layers use to inform their interpretation logic.

Figure 3 shows the resulting layers implemented for our
enhancement along with their accompanying annotation
libraries. The black layers and libraries are Prefab’s existing
methods for identifying interface hierarchy. We implement
the layers shown in red, and populate the red annotation
libraries with data specific to Sliding Widgets. The next two
subsections first present Prefab’s existing layers and
annotations and then describe our layers and annotations.

Identifying Interface Hierarchy with Prefab
Prefab’s identification layers use annotation libraries
containing images of example elements (e.g., an image
annotated to identify a region containing a button).
The layers then extract a library of prototypes generalized
from these annotations (e.g., generalizing the example
button to describe all buttons of the same type). A prototype
describes an arrangement of pixels, and the layers use two
high-level strategies to identify elements based on
prototypes: (1) exactly matching prototype pixels against an
image, or (2) modeling prototype background and then
differencing pixels in an image to identify foreground
interface elements. Prototype parts can be features (defined
as exact patches of pixels) or regions (defined as methods
for painting areas of variable size, such as gradients or
repeating patterns). The top of Figure 3 illustrates three
prototypes selected to show a range of complexity.

The simplest are exact-match prototypes, which consist of a
single feature exactly matching the pixels of an example.
These do not generalize, but many interface elements also
do not vary in appearance (e.g., checkboxes, icons, radio
buttons). For example, the left prototype in Figure 3
identifies all standard checked Windows 8 checkboxes.

A more complex slider prototype uses multiple parts to
account for the variable length of the slider and the variable
thumb position. Five parts characterize the slider’s thumb,
the left and right ends of the trough, and a repeating trough
pattern on either side of the thumb. The middle prototype in
Figure 3 was generalized from the illustrated example and
identifies all standard Mac OS X sliders.

Exact-Match Prototype
Windows 8 Checkbox

Five-Part Prototype
Mac OSX Slider

Nine-Part Prototype
Windows 8 Button

Figure 3: Prefab uses examples of interface elements to
generalize prototypes of the appearance of families of widgets.
Building from a library of these prototypes, we interpret
which elements to replace with Sliding Widgets as well as
their sliding orientation. Our novel methods are shown in red,
while Prefab’s existing methods are in black.

A nine-part prototype adds the ability to model background
and use runtime pixel differencing to identify unpredictable
foreground elements. For example, the prototype at the
right of Figure 3 identifies all Windows 8 default buttons
and any text or icons painted over their gradient
background. It was generalized from the illustrated example
button. Nine-part prototypes are first identified by matching
their four corners and four edges. Prefab then uses the
interior content region to identify elements painted over the
background. Discussion of content regions, including how
Prefab generalizes a background from examples that
include foreground elements, is available in [11].

Interpreting Replacement and Sliding Widget Direction
We have described how Prefab identifies a hierarchy of
elements, but any hierarchy is by itself insufficient for most
applications. In our case, Sliding Widgets requires metadata
indicating (1) which elements should be replaced and
(2) the direction in which a replacement Sliding Widget
should slide. To obtain these, we combine automated
interpretation of Prefab’s recovered hierarchy with social
annotations, wherein people interactively correct erroneous
behavior. Interfaces are procedurally generated, so their
pixel-level appearance rarely changes. Familiar interfaces
will therefore be thoroughly annotated and “just work”.
But our combination of automatic interpretation and social
annotations allows end-users or designers to interactively
correct newly-released or niche interfaces.

For manual annotation, any node can be tagged with a type
of Sliding Widget to replace it (e.g., sliding button, sliding
dropdown menu). Nodes can be explicitly tagged do not
replace, or can be implicitly unavailable for replacement
due to replacement of an ancestor. For sliding direction,
elements can be tagged left, right, up, down, or a diagonal
direction (e.g., down right). Finally, for multi-function
Sliding Widgets such as the spinner replacement in
Figure 3, we allow horizontal and vertical tags. We store
tags using support provided by Prefab Annotations, and tag
nodes using two layers. Specifically, for each annotation we
store a path descriptor based on properties of an element,
its location in the hierarchy, and its ancestors. At runtime
the layer retrieves annotations by matching against each
node’s path. Thus, the first layer tags the set of nodes
annotated with replacement metadata, and the second
specifies the direction for those nodes.

Social annotation can be sufficient in a broad deployment
that leverages social mechanisms, but can be expedited by
even minimal automation. We currently include a layer that
automatically tags nodes with a sliding direction. This layer
iterates over elements marked for replacement and assigns
directions in a rotating clockwise manner. We ignore
elements in dense layouts, and leave widgets in sparse
layouts with a default left or horizontal direction. Finally,
the layer ignores any element with a direction assigned by
the preceding exact-match layer, thus allowing end-users or
designers to manually override the default. Our later section

on Examining Sliding Widgets presents examples of
interfaces where it is desirable to override sliding direction
due to unexpected usability issues in real-world interfaces.

MODELING AND LINKING WIDGET STATES
The previous section describes how Prefab interprets
elements within a static frame. Because our methods
modify interfaces at runtime, defining the behavior of
Sliding Widgets requires monitoring an interface many
frames per second and then programmatically redirecting
input to manipulate that interface. For example, when a
person activates a Sliding Widget by moving its thumb, the
system must send a click to the underlying original element.
And if that button or any other widget then becomes
disabled in response to the interaction, the Sliding Widgets
should mirror this change in their behavior and appearance.

The solution to these challenges comes from the insight that
a change in appearance of an interface element corresponds
to an underlying change in widget state. We therefore
model widget dynamics using finite state machines.
Although a widget may not be explicitly implemented with
an internal state machine, the event-driven nature of
interfaces means such a state machine is generally implicit
(i.e., widgets exist in some state and change that state in
response to interaction events). State machines offer an
explicit model of the dynamics of interface elements, which
we use to provide getters and setters for monitoring and
manipulating widgets. Specifically, getters allow
enhancements to subscribe to events fired when there is a
traversal across one or more edges (e.g., signifying
rollovers, clicks, drags). Setters can prepackage logic that
sends input to an element, transitioning it to a new state.

The critical challenge in modeling state machines is that
there are both: (1) a wide variety of existing widgets to be
translated into Sliding Widgets, and (2) several types of
Sliding Widgets, each requiring a different mapping.
A naïve approach would therefore create a combinatorial
explosion translating each widget to each Sliding Widget.
We instead decouple parts of the translation using an
approach similar to a Model-View-Controller pattern.
A state model is the model, a Sliding Widget or other
enhancement the view, and a linker the controller that
synchronizes state models of the original interface with the
representations used in a pixel-based enhancement. Figure 4
illustrates this decomposition.

Figure 4: Abstract State Models and Linkers decouple the logic
of translating widgets to Sliding Widgets, thus avoiding the
combinatorial explosion of direct translation.

Abstract State Models
An abstract state model is defined as a combination of
states and transitions describing the behavior of a class of
widgets. This state model is then parameterized with
prototypes describing the appearance of a particular widget
in each of the states. For example, Figure 5 presents two
state models parameterized to represent behavior for the
Windows 8 default button and checkbox. The same models
could be parameterized with different prototypes to
represent different buttons or checkboxes.

Abstract state models build on Prefab’s rudimentary
support for observing a transition from one prototype to
another [10]. Each transition is defined by a prototype that
initiates the transition, a prototype that triggers the
transition, and a set of constraints. At runtime, Prefab
checks for transitions that are in progress and could be
triggered subject to their constraints. After given the option
to trigger, these transitions are then given the option to
expire (i.e., removed from the set in progress). Finally,
the current frame is examined for prototypes that initiate
new transitions, which are added to the set in progress.

An abstract state model composes multiple transitions, each
defining an edge between two states. States are then
parameterized by providing the specific prototypes used in
each transition. There are several potential approaches to
parameterizing a state model, including interactive
authoring tools or more automated methods that passively
observe interaction with interfaces, choose among possible
state models, and populate each state. We currently use an
authoring tool, leaving integration of more advanced
methods for future work. Importantly, our methods separate
modeling of state machines from recognition of widget
appearance, allowing development of abstract models that
can be used across a variety of concrete widgets.

At runtime our system maintains a set of parameterized
state models that are potentially in progress. This set is
populated using the active transitions monitored by Prefab.
The triggering of a transition invokes a traversal across the
corresponding edge in a state model. When a transition
expires, its state model is given the option to expire,
denoting a widget is no longer present in the interface.
Abstract state models include setters for transitioning
between states via manipulation of the interface.

Specifically, the setter logic executes input events necessary
for traversing edges in a state model. For example, the state
model in Figure 5 packages a “click” function that sends
mouse down and up events to the source application. This
code is defined in the abstract state model, requiring only a
single definition for any widgets that share this behavior.

Linkers
A state model defines the dynamics of an element, but those
dynamics also need to be related to a Sliding Widget. We
therefore provide linkers. Specifically, a linker (1) listens
for edge traversals in a state machine and updates the
Sliding Widget accordingly, and (2) listens for interaction
events fired in a Sliding Widget and updates the state
model. A single linker can be implemented for an abstract
state model paired with a class of Sliding Widgets.
For example, Figure 6 illustrates a linker that connects a
button abstract state model to a Sliding Button, highlighting
the flow of events passed between them.

Upon observing an interaction with a Sliding Widget, a
linker can induce arbitrarily complex state machine
manipulations. For example, our linker in Figure 6 executes
a range of actions depending on the observed Sliding
Button interaction. The simplest case is when a user touches
down on a Sliding Button and the linker induces a mouse
rollover, traversing a single edge in the state machine.
In contrast, confirming activation of a Sliding Button
induces multiple edge traversals. The linker sends a click to
the underlying button, which transitions it first to the state
machine’s pressed state and then back to the rollover state.
Importantly, the separation of a linker from the Sliding
Widget allows designers to create Sliding Widgets without
a need to implement complex input redirection logic.

Although a state model can be manipulated by sending
input events to the source interface, its state does not
change until the underlying element’s appearance changes.
The length of this delay depends on time it takes to process
input, and could be problematic for Sliding Widgets or
other enhancements that want to provide instant visual
feedback after an interaction. To address this problem, each
active state model maintains pointers to two states: the
current state and the expected state. The expected state
reflects the state to which the machine is expected to
traverse, but has not yet visualized. When a state model is

Button State Machine
Windows 8 Default Button

Checkbox State Machine
Windows 8 Default Checkbox

Figure 5: Abstract State Models are parameterized with
prototypes describing the appearance of a widget. These two
state models are parameterized with prototypes generated
from Windows 8 Default Buttons and Checkboxes.

Figure 6: Linkers synchronize state models and Sliding
Widgets. These two snippets are from a linker that
synchronizes Sliding Buttons with mouse-based buttons.

manipulated via a setter, it first sets its expected state and
then sends input to the underlying widget. A state model
also fires an event when its expected state changes
(e.g., onRolloverExpected in Figure 6), allowing a linker to
provide instant updates to the Sliding Widget.

MAPPING WIDGET APPEARANCE
We have presented methods for modeling existing widgets,
but there is also a challenge in styling the appearance of the
runtime enhancement. Because our Sliding Widgets overlay
existing interfaces, it is important that they maintain a style
that is consistent with the underlying interface.

We address this problem with mappers, which
automatically style Sliding Widgets consistent with their
underlying original interface. In our solution, we first
separate Sliding Widget style from content as in Hudson
and Smith [19]. We also use customizable parts as in
Hudson and Tanaka [20]. We then use mappers to translate
Prefab prototype parts to the Sliding Widget parts.
Prototypes model the pixel-level appearance of existing
elements, and so we extend their usage from identification
to also informing the rendering of new widgets.

Decomposition of a Sliding Widget into
customizable parts is straightforward.
Parts render fixed bitmaps or repeating
patterns, such as simple repeating colors
or more complex gradients. The pixels
used in these parts are parameterized to
define a specific appearance. Here a Sliding Button is
decomposed into eleven parts, each parameterized with a
simple appearance. Four bitmaps define the corners of the
slider, four patterns the edges, two patterns the left and right
troughs behind the thumb, and a single bitmap for the
thumb itself. We use similar but more complex models to
render other Sliding Widgets, such as the Sliding Spinners
and Sliding Dropdown Menus in Figure 1.

Designers can leverage these decompositions to manually
style Sliding Widgets, but our mappers expedite this
process with methods for styling Sliding Widgets consistent
with their underlying original interface. Mappers can be
designed for reuse among many prototypes or for a specific
prototype. They accept source prototypes and output
Sliding Widgets with their parts parameterized based on
those prototypes. The following examples illustrate three
mappers currently in our framework: basic one-part
mappers, nine-part mappers, and multi-prototype mappers.

One-part mappers translate one-part prototypes into Sliding
Widgets. An example we have implemented uses two
colors extracted from the prototype to define chrome in a
Sliding Button. Specifically, we render the corners and
edges of the Sliding Widget using the darkest color in the
prototype. We then render the trough by extracting the
lightest color in the prototype and creating a gradient from

the darkest color to the lightest color. The above example
shows this one-part mapper applied to a save button.

Nine-part mappers obtain more complex renderings using
Prefab’s nine-part prototypes. This is an example nine-part
mapper that translates the appearance of a Windows 8 close
button. It maps the corners and edges of the button
prototype to the Sliding Widget thumb. It then obtains a
recessed look by painting the trough using a reverse of the
gradient obtained from the prototype content region.

The previous two examples use parts from a single
prototype to parameterize the appearance of a sliding
widget. It is also possible to perform more complex
mappings using multiple prototypes. Here we show an
example multi-prototype mapper where we map from
prototypes that define the two arrows of a spinner. The
content regions of those prototypes provide the up and
down arrows, which are mapped into the thumb of the
slider. Our associated video shows additional Sliding
Widgets created using multi-prototype mappers, including a
Sliding Checkbox created from two one-part prototypes that
describe the appearance of a Windows 8 checkbox in its
checked and unchecked states.

EXAMINING SLIDING WIDGETS IN THE WILD
Sliding Widgets and other techniques addressing the fat
finger problem are often designed, discussed, and evaluated
using fields of abstract widgets or other limited testbeds.
Because our implementation provides the ability to deploy
Sliding Widgets, we sought to determine what insights we
could gain from examining them in real-world interfaces.
Our findings identify three challenges: (1) the challenge of
supporting both area and point cursors within the same
interface, (2) limitations of sliding in complex interfaces,
and (3) limitations of replacing individual widgets.

Challenges with Supporting Area and Point Cursors
A major challenge is defining Sliding Widgets that work
within the same interface as mouse-based widgets. Consider
the spinner shown in the bottom-center of Figure 7, which
illustrates a common scenario where a spinner controls the
contents of an adjacent textbox. The spinner can be
replaced with a Sliding Widget, but it then becomes
difficult to manipulate the textbox directly. This is because
Sliding Widgets leverage the entire contact area of touch
input, but the touch here also overlaps the text field for
which area cursor input is undefined. Sliding Widgets can
resolve this ambiguity by alternating their orientation for
disambiguation among other adjacent Sliding Widgets, but
this strategy does not resolve the scenario where a touch
area overlaps both a Sliding Widget and an element
designed only for point-cursor interaction.

Sliding Widgets were unusable without the ability to
disambiguate between pointing and sliding, so we
developed a strategy for gracefully degrading from a
contact area to a standard point cursor. More concretely,
when a person touches a point-cursor element, we pass the
standard touch point to the underlying interface (typically
computed as the contact area centroid). However, when a
person touches a Sliding Widget, our overlay will send the
entire contact area to the widget. In dense layouts, we
employ an enhanced implementation of Vogel and
Baudisch’s Shift to enable fine cursor adjustment [38].
After a touch event, Shift creates a callout showing a copy
of the occluded screen area and places it in a non-occluded
location. Shift was designed for point-cursor interaction, so
we extend it to support area cursor input. Our goal is to
make it possible to swiftly activate a Sliding Widget
without eliminating precise control of a pointer. Thus, the
core challenge in this task is to separate fine-tuning input
from the dragging needed to activate a Sliding Widget.

Figure 7 storyboards our solution for disambiguating
elements in dense layouts. When a user dwells over an
element, we present a callout showing the occluded screen
area. We then distinguish fine-tuning from dragging using a
threshold on input velocity. Specifically, slow movements
below the threshold are categorized as fine-tuning, and fast
movements are treated as drags. Fine-tuning moves the
position of a point cursor over mouse-based targets, and for
any Sliding Widgets under the point cursor it sends touch
down events. Alternatively, dragging only manipulates
Sliding Widgets. The drag moves a Sliding Widget’s thumb
in the direction of the drag, allowing activation while hiding
that input from any other point-cursor targets.

Limitations of Sliding in Complex Interfaces
Sliding Widgets use the metaphor of
real-world sliding manipulations, but it
is unclear how this applies to certain
elements. One example is in hierarchical widgets, where an
interactive element contains an interactive child element. In
this screenshot of a panel in Adobe Photoshop, each row is
clickable (to select a layer) along with its inner buttons
(to toggle layer visibility). Unfortunately, this has no clear
Sliding Widget analog. Sliding Widgets could potentially
be nested in a larger Sliding Button, but this would be
awkward when sliding either the outer or inner widgets.

We also found limitations of the sliding metaphor in the
context of groups of related elements. Moscovich et al.
demonstrate the promising feature of Sliding Widgets
where a list of elements is selected in a single stroke. Our
associated video also demonstrates an example of this
interaction in the context of a Skype dialog. However, in
most real interfaces where multiple elements are frequently
toggled together, developers provide a “select all” toggle.
In other cases, elements tend to be unrelated or infrequently
toggled, leaving single stroke interactions undesirable.

We believe this problem is largely due to conflicts between
Sliding Widget behavior and the intentional design of
interfaces for point cursors. More concretely, it may be
possible to redesign an entire interface to exploit the
advantages of single-stroke sliding interactions, but only at
the obvious cost of needing to overhaul much of the design.
Dixon et al. raised a similar tension between target-aware
pointing and existing pointing-based interfaces [8], so
perhaps this problem surfaces a larger conflict present in
designing surface-level modifications to existing designs.

Limitations of Individual Widget Replacement
Our implementation mostly replaces individual elements
with individual Sliding Widgets. However, this approach
can introduce conflicts when multiple widgets are related.

We partially anticipated this in our implementation of a
Sliding Spinner. A naïve implementation would replace
each button in the spinner with a Sliding Button and
alternate their direction to help with disambiguation.
However, this can conflict with a person’s expectations of
the interface if the chosen sliding direction is different than
the semantic direction of the spinner. For example, the
spinner in Figure 1 adjusts the numerical value in its
textbox, and sliding horizontally may seem less appropriate
than sliding vertically. The problem is magnified if the
arrows from the original spinner are mapped into the
appearance of the Sliding Widget. We addressed this
problem with the Sliding Spinner that understand the
relation between the two buttons and behaves appropriately.

While our strategy for grouping multiple
related widgets works for spinners, the
strategy is much more difficult to implement
for larger collections of related widgets. For
example, consider this enhanced Windows 8
Calculator interface. It includes a typical grid
of buttons, but replacing each individual button yields an
interface that is jarring and difficult to use. The calculator’s
original layout is relatively dense, so it seems useful to
alternate sliding directions. But then a person has to
carefully inspect each button to understand how to slide it.
Instead, the entire panel of buttons should be replaced with
a Sliding Widgets optimized for these types of grid layouts.

This problem suggests that a more global understanding of
interface layout is necessary for replacing some elements.
One possible strategy is to employ a mechanism similar to

Figure 7: We modify Vogel and Baudisch’s Shift [38],
employing pointing when the user fine-tunes and contact
area-based touches when the user drags.

Nichols et al.’s Smart Templates for replacing entire groups
of controls [27]. This technique uses parameterized
templates to specify when different conventions might be
applied. Our approach to replacing spinner widgets can be
seen as an initial example of this, but we imagine there is an
opportunity to extend this idea to more sophisticated
templates capturing a variety of conventions and semantics.

DISCUSSION AND CONCLUSION
Although we describe our pixel-based methods in the
context of implementing Sliding Widgets, our modeling of
state and our approaches to styling widgets using prototype
parts can enable and inform a variety of future
enhancements. For example, other enhancements can
directly re-use our state models. An enhancement to support
crossing-based widgets on hybrid pen and mouse devices
could use our same state models, implement new linkers
relating their crossing widgets to our models, and style their
widgets using our techniques. Even more complex
enhancements might go beyond replacing individual
widgets, using our models to drive entire new interfaces
automatically generated by a system like Supple [15].

We described how our state models provide getters and
setters for widget state, encapsulating low-level details
required for monitoring and manipulating widgets. These
turned out to be additionally beneficial because they
provide an API that is similar to the API of the underlying
toolkit itself. For example, our checkbox state model
provides a familiar getChecked() method, which hides
details of what states and prototypes the model uses to
represent the checkbox. We believe that there is a rich
opportunity for future work that investigates a more general
set of semantic views that encapsulate pixel-based methods.
The goal of these views would be to provide developers of
pixel-based enhancements with a higher-level toolkit that is
more similar to existing interface toolkits. For example, a
getLabel() method on a semantic view of a button would
manage the details of obtaining the button’s prototype,
recovering its content, and processing those pixels to
recover its text.
Our linkers automatically map Sliding Widget interactions
into a sequence of mouse events to manipulate the
underlying interface element. Current windowing systems
are not designed to support this type of behavior. In
particular, the overlay and the underlying enhancement
must share the same input stream, which requires blocking
input from one or the other during different stages of an
interaction. This limitation also makes it difficult to support
simultaneous manipulation of elements (e.g., Moscovich
et al. suggest using an area cursor to drag two sliders at the
same time). Deeper exploration of new input management
frameworks is an opportunity for future work. For example,
a framework might provide multiple input streams,
separating live input from redirected input.

We implemented several basic linkers for synchronizing
Sliding Widgets and state machines in most interfaces, but

we imagine developers will extend these or create more
sophisticated linkers tailored for specific applications. As
one motivation, our example linker maps touches to mouse
rollovers, thus making it possible to view tooltips or other
rollover responses in existing interfaces. But Moscovich
et al. also demonstrated more complex responses to touch
events with their action-preview-on-touch behaviors [24].
In their design, touching a button displays a preview of the
action it will perform if activated. Future work might
therefore examine linkers that execute these previews by
monitoring and manipulating multiple state models.
Importantly, our Model-View-Controller pattern for
separating linkers from state models and Sliding Widgets
makes it possible to define custom behaviors without
modifying state model or Sliding Widget code.

Our application is the first practical general-purpose
implementation of Sliding Widgets. There is nearly always
a fundamental gap between the knowledge that can be
gained in lab studies versus the implications of this
knowledge for real-world contexts, and we believe this
work narrows the gap for Sliding Widgets. We are
exploring the best way to deploy our application on
Windows 8 hybrid devices to further bridge the gap from
the lab to the field. We also envision tools accompanying
the deployment where developers can gather logged usage
data to provide insight into real-world challenges
(e.g., testing alternative designs, visualizing problems
reported by end-users of pixel-based enhancements).
Our hope is to help catalyze interaction research in escaping
the lab, putting it into the hands of end-users who stand to
benefit from the field’s rich innovation.

ACKNOWLEDGEMENTS
We thank Scott E. Hudson and Daniel S. Weld for advice,
discussion, and thoughts that helped shape this research.
This work was supported in part by the National Science
Foundation under award IIS-1053868.

REFERENCES
1. Albinsson, P.-A. and Zhai, S. High Precision Touch Screen

Interaction. CHI 2003, 105–112.
2. Banovic, N., Grossman, T., Matejka, J., and Fitzmaurice, G.

Waken: Reverse Engineering Usage Information and Interface
Structure from Software Videos. UIST 2012, 83–92.

3. Baudisch, P. and Chu, G. Back-of-Device Interaction
Allows Creating Very Small Touch Devices. CHI 2009,
1923–1932.

4. Benko, H., Wilson, A.D., and Baudisch, P. Precise Selection
Techniques for Multi-Touch Screens. CHI 2006, 1263–1272.

5. Bolin, M., Webber, M., Rha, P., Wilson, T., and Miller,
R.C. Automation and Customization of Rendered Web
Pages. UIST 2005, 163–172.

6. Chang, T.-H., Yeh, T., and Miller, R. Associating the
Visual Representation of User Interfaces with Their
Internal Structures and Metadata. UIST 2011, 245–254.

7. Chang, T.-H., Yeh, T., and Miller, R.C. GUI Testing Using
Computer Vision. CHI 2010, 1535–1544.

8. Dixon, M., Fogarty, J., and Wobbrock, J. A General-Purpose
Target-Aware Pointing Enhancement Using Pixel-Level
Analysis of Graphical Interfaces. CHI 2012, 3167–3176.

9. Dixon, M. and Fogarty, J. Prefab Layers and Prefab
Annotations: Extensible Pixel-Based Interpretation of
Graphical Interfaces. In Preparation.

10. Dixon, M. and Fogarty, J. Prefab : Implementing Advanced
Behaviors Using Pixel-Based Reverse Engineering of
Interface Structure. CHI 2010, 1525–1534.

11. Dixon, M., Leventhal, D., and Fogarty, J. Content and
Hierarchy in Pixel-Based Methods for Reverse Engineering
Interface Structure. CHI 2011, 969–978.

12. Eagan, J.R., Beaudouin-Lafon, M., and Mackay, W.E.
Cracking the Cocoa Nut: User Interface Programming at
Runtime. UIST 2011, 225–234.

13. Edwards, W.K., Hudson, S.E., Marinacci, J., Rodenstein, R.,
Rodriguez, T., and Smith, I. Systematic Output Modification
in a 2D User Interface Toolkit. UIST 1997, 151–158.

14. Fujima, J., Lunzer, A., Hornbæk, K., and Tanaka, Y. Clip,
Connect, Clone: Combining Application Elements to Build
Custom Interfaces for Information Access. UIST 2004, 175.

15. Gajos, K.Z., Wobbrock, J.O., and Weld, D.S. Automatically
Generating User Interfaces Adapted To Users’ Motor and
Vision Capabilities. UIST 2007, 231–240.

16. Grossman, T. and Balakrishnan, R. The Bubble Cursor :
Enhancing Target Acquisition by Dynamic Resizing of the
Cursor’s Activation Area. CHI 2005, 281–290.

17. Grossman, T., Matejka, J., and Fitzmaurice, G. Chronicle:
Capture, Exploration, and Playback of Document
Workflow Histories. UIST 2010, 143–152.

18. Hartmann, B., Wu, L., Collins, K., and Klemmer, S.R.
Programming by a Sample: Rapidly Creating Web
Applications with d.mix. UIST 2007, 241–250.

19. Hudson, S.E. and Smith, I. Supporting Dynamic
Downloadable Appearances in an Extensible User Interface
Toolkit. UIST 1997, 159–168.

20. Hudson, S.E. and Tanaka, K. Providing Visually Rich Resizable
Images for User Interface Components. UIST 2000, 227–235.

21. Hurst, A., Hudson, S.E., and Mankoff, J. Automatically
Identifying Targets Users Interact with During Real World
Tasks. IUI 2010, 11–20.

22. Kumar, R., Talton, J.O., Ahmad, S., and Klemmer, S.R.
Bricolage : Example-Based Retargeting for Web Design.
CHI 2011, 2197–2206.

23. Little, G., Lau, T.A., Cypher, A., Lin, J., Haber, E.M., and
Kandogan, E. Koala: Capture, Share, Automate, Personalize
Business Processes on the Web. CHI 2007, 943–952.

24. Moscovich, T. Contact Area Interaction with Sliding
Widgets. UIST, (2009), 13–22.

25. Nichols, J., Hua, Z., and Barton, J. Highlight: A System for
Creating and Deploying Mobile Web Applications.
UIST 2008, 249–258.

26. Nichols, J. and Lau, T. Mobilization by Demonstration: Using
Traces to Re-author Existing Web Sites. IUI 2008, 149–160.

27. Nichols, J., Myers, B. a., and Litwack, K. Improving
Automatic Interface Generation with Smart Templates.
IUI 2004, 286–288.

28. Olsen, D.R., Hudson, S.E., Verratti, T., Heiner, J.M., and
Phelps, M. Implementing Interface Attachments Based on
Surface Representations. CHI 1999, 191–198.

29. Olsen, D.R., Taufer, T., and Fails, J.A. ScreenCrayons:
Annotating Anything. UIST 2004, 165–174.

30. Olwal, A., Feiner, S., and Heyman, S. Rubbing and
Tapping for Precise and Rapid Selection on Touch-Screen
Displays. CHI 2008, 295–304.

31. Pongnumkul, S., Dontcheva, M., Li, W., Wang, J.,
Bourdev, L., Avidan, S., and Cohen, M.F. Pause-and-Play:
Automatically Linking Screencast Video Tutorials with
Applications. UIST 2011, 135–144.

32. Potter, R. Triggers: Guiding Automation with Pixels to
Achieve Data Access. A. Cypher, eds. MIT Press.

33. Savva, M., Kong, N., Chhajta, A., Fei-fei, L., Agrawala, M.,
and Heer, J. ReVision : Automated Classification , Analysis
and Redesign of Chart Images. UIST 2011, 393–402.

34. St Amant, R., Lieberman, H., and Potter, R. Visual
Generalization in Programming by Example.
Communications of the ACM 43, 3 (2000), 107–114.

35. St Amant, R., Riedl, R., Ritter, F.E., and Reifers, A. Image
Processing in Cognitive Models with SegMan. HCII 2005.

36. Stuerzlinger, W., Chapuis, O., Phillips, D., and Roussel, N.
User Interface Façades: Towards Fully Adaptable User
Interfaces. UIST 2006, 309–318.

37. Tan, D.S., Meyers, B., and Czerwinski, M. WinCuts :
Manipulating Arbitrary Window Regions for More
Effective Use of Screen Space. CHI 2004, 1525–1528.

38. Vogel, D. and Baudisch, P. Shift : A Technique for
Operating Pen-Based Interfaces Using Touch. CHI 2007,
657–666.

39. Waldner, M., Steinberger, M., Grasset, R., and
Schmalstieg, D. Importance-Driven Compositing Window
Management: CHI 2011, 959–968.

40. Weldon, J. and Shneidermanss, B. Improving the Accuracy
of Touch Screens: An Experimental Evaluation of Three
Strategies. CHI 1988, 27–32.

41. Wigdor, D., Forlines, C., Baudisch, P., Barnwell, J., and
Shen, C. LucidTouch : A See-Through Mobile Device.
CHI 2007, 269–278.

42. Yeh, T., Chang, T.-H., and Miller, R.C. Sikuli: Using GUI
Screenshots for Search and Automation. UIST 2009, 183–194.

43. Yeh, T., Chang, T.-H., Xie, B., Walsh, G., Watkins, I.,
Wongsuphasawat, K., Huang, M., Davis, L.S., and
Bederson, B.B. Creating Contextual Help for GUIs Using
Screenshots. UIST 2011, 145–154.

44. Zettlemoyer, L.S. and St. Amant, R. A Visual Medium for
Programmatic Control of Interactive Applications. CHI
1999, 199–206.

45. Zettlemoyer, L.S., Amant, R.S., and Dulberg, M.S. IBOTS :
Agent Control Through the User Interface. IUI 1999.

