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ABSTRACT 
Pixel-based methods offer unique potential for modifying 
existing interfaces independent of their underlying 
implementation. Prior work has demonstrated a variety of 
modifications to existing interfaces, including accessibility 
enhancements, interface language translation, testing 
frameworks, and interaction techniques. But pixel-based 
methods have also been limited in their understanding of 
the interface and therefore the complexity of modifications 
they can support. This work examines deeper pixel-level 
understanding of widgets and the resulting capabilities of 
pixel-based runtime enhancements. Specifically, we present 
three new sets of methods: methods for pixel-based 
modeling of widgets in multiple states, methods for 
managing the combinatorial complexity that arises in 
creating a multitude of runtime enhancements, and methods 
for styling runtime enhancements to preserve consistency 
with the design of an existing interface. We validate our 
methods through an implementation of Moscovich et al.’s 
Sliding Widgets, a novel runtime enhancement that could 
not have been implemented with prior pixel-based methods. 
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INTRODUCTION 
Pixel-based methods for runtime interface modification 
offer great potential for democratizing interaction. Because 
all graphical interfaces ultimately consist of pixels, these 
methods enable modifying applications without their source 
code and independent of their underlying toolkit 
implementation. Pixel-based systems have demonstrated a 
wide variety of promising enhancements to existing 
interfaces, including contextual and video-based tutorials 

[2,31,43], automated visualization retargeting [33], 
improved window managers [39], interface testing 
frameworks [7], ink annotation overlays [29], systems for 
exploring document workflow histories [17], and web 
content retargeting [22]. 

Despite the promise of pixel-based systems, they have been 
limited to relatively simple overlays that primarily point at 
or highlight existing elements. At least two key challenges 
have limited prior enhancements: (1) modeling a widget’s 
behavior, and (2) capturing an interface’s style. Structured 
support for these two tasks would enable more advanced 
modifications to a variety of existing interfaces. 

Although current systems support the interpretation of 
pixels in an individual screen capture, the behavior of 
widgets in an interface is difficult to model because many 
potential enhancements require an understanding of how an 
interface changes across multiple frames (e.g., if a 
checkbox becomes checked, if a slider thumb has moved).  
In addition to monitoring these changes, more advanced 
enhancements also require manipulating the interface (e.g., 
sending click events to set a checkbox, dragging a slider). 
As a result, developers are faced with implementing their 
own complex frame-to-frame analysis of interfaces together 
with low-level input redirection mechanisms.  

Capturing an interface’s style is important because many 
runtime modifications do not fully alter the appearance of 
an existing interface, but instead directly overlay new 
elements onto the interface. Therefore it is important that 
these enhancements are styled to preserve consistency with 
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Figure 1: We present new pixel-based methods for modifying
existing interfaces at runtime, and we use our methods to
explore Moscovich et al.’s Sliding Widgets in real-world
interfaces. We overlay Sliding Widgets throughout Microsoft
Windows 8, replacing standard mouse-based elements to
improve interaction with hybrid touch-and-mouse devices. 



 

 

the existing interface. Without proper support for capturing 
style, enhancements are likely to be jarring and unusable. 

This paper addresses these limitations with novel methods 
for modeling the state and capturing style of individual 
widgets. Specifically, we build upon Prefab’s pixel-based 
methods for interpreting interfaces [8,9,10,11]. We first 
introduce methods for real-time modeling of widgets in 
multiple states. We then describe methods for linking an 
original widget’s state into the representation needed by a 
new surface enhancement. Finally, we introduce style 
mappers and show how they can be used to render entirely 
new widgets in an existing interface while maintaining a 
style that is consistent with the original design. We focus on 
these widget-level methods because they serve as building 
blocks for complex enhancements to entire interfaces. 

We contextualize these contributions in an implementation 
of Moscovich et al.’s Sliding Widgets, touch widgets 
activated by sliding a moveable element [24]. Our 
implementation dynamically overlays Sliding Widgets on 
mouse-based interface elements throughout Microsoft 
Windows 8. For example, Figure 1 and our associated video 
present screenshots of our implementation in a variety of 
popular interfaces, including Microsoft Word 2013, Adobe 
Reader, Gmail in the Google Chrome Browser, and 

Windows Explorer. We replace elements in these 
applications using various types of Sliding Widgets, 
including Sliding Buttons, Sliding Spinners, Sliding 
Toggles, and Sliding Dropdown Menus. Sliding Widgets 
are well beyond the capabilities of prior pixel-based 
systems, and the implementation in this work informs and 
validates the design of our new methods. 

In addition to validating our methods, we choose to 
implement Sliding Widgets in the context of existing 
interfaces because the implementation could directly benefit 
an emerging set of hybrid devices that support both touch 
and mouse input. Examples of these devices are shown in 
our associated video. Unfortunately, graphical interfaces for 
hybrid devices are either difficult to use or expensive to 
produce. This is because developers either: (1) provide 
standard mouse-based interfaces with small and densely 
arranged targets, or (2) implement an entire alternate 
interface optimized for touch. We therefore explore the 
approach of dynamically replacing existing mouse-based 
elements with touch controls. This approach can improve 
interaction with hybrid devices without the burden of 
designing and implementing two entire alternate interfaces. 

Figure 2 overviews our system. We first query the window 
manager for images of windows, and then interpret their 
elements using Prefab’s pixel-based methods [9,10,11]. 
Specifically, we use Prefab to recover an interface 
hierarchy containing a node for each interface element 
(e.g., a leaf for a text label, an inner node with children for 
a button and any interior content). We walk this tree to 
determine what elements to replace, and then we overlay 
our Sliding Widget. To maintain a style consistent with the 
source interface, our overlay renders each Sliding Widget 
using elements of the pixel-level appearance, as captured by 
Prefab’s prototypes. This process modifies a single frame 
captured from an interface, and so we repeat this many 
times per second, synchronizing each Sliding Widget with 
its underlying widget. Specifically, we use state models to 
monitor and manipulate underlying widgets. Transitions in 
a state model cause the Sliding Widget to update its 
appearance and behavior, and interaction with a Sliding 
Widget generates input manipulating the underlying widget. 

The specific contributions of our work include: 
• Methods for pixel-based modeling of widgets in multiple 

states. Specifically, we introduce abstract state models 
for describing how to interpret and manipulate categories 
of widgets. Abstract models are then parameterized with 
pixel-level data specifying the appearance of a specific 
widget in each of the modeled states. 

• Methods for managing the combinatorial complexity that 
arises in creating a multitude of runtime enhancements 
that can apply to a multitude of widgets. Specifically, we 
show how runtime enhancement can be framed in the 
Model-View-Controller pattern, and we introduce linkers 
for specifying how a particular runtime enhancement 
relates to a particular abstract state model. 

 
Figure 2: We build upon Prefab's methods for pixel-based 
identification of interface elements. Identified elements are 
replaced by overlaying a corresponding Sliding Widget.  The 
original widget is then modeled and manipulated using state 
machine models.  Finally, we style the appearance of overlaid 
Sliding Widgets by mapping elements of pixel-level appearance 
from Prefab's prototypes of the original interface. 



 

 

• Methods for styling runtime enhancements to preserve 
consistency with the design of an existing interface. 
Specifically, we introduce mappers that use pixel-level 
elements of an interface’s appearance to style runtime 
enhancements to match that interface. 

• An implementation of Sliding Widgets as a runtime pixel-based 
enhancement that can be applied to existing interfaces. This 
validates our new pixel-based methods and also unearths 
implications for the design of Sliding Widgets and future 
pixel-based runtime enhancements. 

RELATED WORK 
Surface-Level Runtime Modification. Runtime modification 
has broad applications in accelerating innovation and 
facilitating adoption. In prior work, Edwards et al. [13] and 
Olsen et al. [28] modify interfaces by replacing the toolkit 
drawing object and intercepting commands (e.g., draw_line, 
draw_string). They update interfaces with new 
functionality, such as search and bookmark widgets. More 
recent examples include application mash-ups [14,18,36], 
re-authoring desktop applications for mobile interfaces 
[25,26], and automating repetitious interactions [5,23].  

Traditional approaches to runtime modification are based in 
accessibility APIs [36] or injecting into an interface’s 
underlying toolkit [12,13,28]. Accessibility APIs expose 
interface state, but are frequently incomplete because 
application developers fail to implement the API. For 
example, Hurst et al. found 25% of widgets are completely 
missing from the accessibility API [21]. Injection 
techniques attempt to gain full access to an interface by 
inserting custom logic via the toolkit or other runtime 
system. However, injection must be carefully crafted for 
each interface and underlying toolkit, making it difficult to 
apply to general-purpose whole-desktop enhancements like 
the Sliding Widgets we pursue here. Perhaps most 
importantly, both methods expose widget models, not 
necessarily their on-screen view (e.g., the pixel-level 
appearance of a slider thumb is intentionally encapsulated). 
But understanding pixel-level appearance is a requirement 
for many potential enhancements. For example, we use the 
pixel-level appearance of existing widgets to style Sliding 
Widgets to match the interface. 

Pixel-Based Methods. Pixel-based methods do not require 
cooperation from an application’s original developers and 
also overcome the fragmentation of interfaces and toolkits. 
Applications expose pixels as normal, and their raw pixels 
are then used as a foundation for additional functionality. 
Researchers have explored a variety of low-level 
abstractions to enable a range of pixel-based runtime 
modifications. Classic work by Zettlemoyer et al. [44,45] 
examined widget identification in IBOTS and VisMap for 
interface agents and programming by example [32,34]. 
St. Amant et al. [35] developed Segman for cognitive 
modeling applications. Olsen et al.’s [29] ScreenCrayons 
link interactive ink annotations to arbitrary screen elements. 
Tan et al.’s [37] WinCuts interactively subdivides windows 

via a copy-paste metaphor. Yeh et al.’s Sikuli [42] uses 
template matching and voting based on invariant local 
features to identify targets in interface scripting and testing 
applications. Dixon et al.’s Prefab [9,10,11] demonstrates 
real-time modification using input and output redirection 
together with pixel-based reverse engineering of interface 
content and structure. They also demonstrate rudimentary 
pixel-based strategies for rendering interface overlays [11]. 
Our current work is informed by this prior research, 
contributing to pixel-based methods and demonstrating 
deep implementation of Sliding Widgets.  

The strengths and limitations of pixel-based methods versus 
application introspection motivate hybrid strategies that 
combine the two approaches. For example, Chang et al. [6] 
explored several synergies in PAX, including use of Sikuli 
to obtain paths to elements in the accessibility API, 
pixel-level analyses to locate screen-rendered text, and the 
use of Sikuli to find elements in portions of the screen 
where the accessibility API’s representation is incomplete. 
We focus on core pixel-based methods required for state 
and style, and future work could extend these to hybrid 
approaches if needed for more complex or niche interfaces. 

Our work presents the first general-purpose pixel-based 
methods for modeling widgets in multiple states. Prior work 
explores basic solutions for monitoring interface changes, 
but these methods are tailored to the goals of a specific 
enhancement. The most sophisticated example is Banovic 
et al.’s Waken, a system for reverse engineering and 
augmenting video tutorials [2]. Their system observes 
changes in an interface via lightweight frame differencing, 
and uses these observations to identify widgets. In contrast, 
our abstract state models are capable of capturing any 
transition in a widget’s appearance, and they can also 
invoke transitions in a widget’s state. These capabilities 
enable advanced runtime enhancements, moving beyond 
the identification of widget occurrences in a frame. 

This paper combines the development of new pixel-based 
methods with an examination of an interaction technique in 
the context of real-world interfaces. This combination 
parallels the work of Dixon al. in their implementation of a 
general-purpose target-aware pointing enhancement [8]. 
They validate novel pixel-based methods in the context of 
an implementation of Grossman and Balakrishnan’s Bubble 
Cursor, an area cursor that dynamically expands to always 
capture the nearest target [16]. Like our Sliding Widgets 
implementation, their cursor functions across the desktop, 
providing an opportunity to examine its behavior in 
real-world interfaces. In contrast, the Bubble Cursor only 
requires the context of a single frame to interpret targets, 
and it does not require deep knowledge of an element’s 
style to render its overlay. Our Sliding Widgets require this 
complex modeling, and we therefore advance the 
state-of-the-art in pixel-based methods with new support for 
modeling widgets in multiple states and for styling new 
widgets to be consistent with existing interfaces. 



 

 

Improving Touch Interaction. A fundamental challenge in 
touch-based interaction is addressing the fat finger problem, 
the ambiguity caused when a finger touches multiple 
targets.  Our implementation of Moscovich et al.’s Sliding 
Widgets is exemplary of a large body of techniques that 
also explore the problem (e.g., see [24] for an enumeration 
of many techniques). Few of these techniques were 
specifically designed for hybrid touch and mouse devices, 
but many have explored touch support for legacy interfaces. 
These include techniques designed to overcome the 
occlusion of the target and selection point, such as 
[3,38,40,41]. Other techniques address the ambiguity 
caused by reducing a touch’s contact area down to a single 
selection point, such as Pointing by Zooming and Rubbing 
[1,4,30]. Although these techniques offer great potential, 
many of them remain difficult to evaluate and deploy in the 
context of real interfaces, due to the difficulty of modifying 
existing interfaces at runtime. Thus our new pixel-based 
methods offer the opportunity to better understand and 
deploy techniques like these, helping researchers bridge the 
gap from the lab to the field. 

IDENTIFYING AND INTERPRETING ELEMENTS 
We interpret interfaces using Prefab’s pixel-based methods 
for reverse engineering interface structure [9,10,11]. 
Specifically, we use Prefab Layers and Prefab Annotations 
to identify an interface hierarchy and then recover Sliding 
Widget metadata for nodes in that hierarchy.   

Prefab Layers structure pixel interpretation as a series of 
tree transformations. The root corresponds to the processed 
image, and each identified interface element is added as a 
node in the tree. Each transformation might add new 
elements, tag elements with metadata, or remove elements. 
Transformation code is organized into layers, which can be 
grouped into chains. An interface is then interpreted by 
executing a layer chain: the raw image is passed into the 
first layer, then the output of each layer is passed into the 
next. Developers reuse and compose existing functionality 
by concatenating layer chains. 

Prefab Annotations support robust annotation of interface 
elements with metadata that has been inferred, provided by 
a developer, or collected from end-users of pixel-based 
enhancements. More concretely, an annotation stores 
metadata to be applied to a node in a recovered hierarchy. 
For example, Figure 2's green node has been annotated with 
metadata indicating it should be replaced with a Sliding 
Button. Collections of annotations are stored in libraries 
that layers use to inform their interpretation logic. 

Figure 3 shows the resulting layers implemented for our 
enhancement along with their accompanying annotation 
libraries. The black layers and libraries are Prefab’s existing 
methods for identifying interface hierarchy. We implement 
the layers shown in red, and populate the red annotation 
libraries with data specific to Sliding Widgets. The next two 
subsections first present Prefab’s existing layers and 
annotations and then describe our layers and annotations.  

Identifying Interface Hierarchy with Prefab 
Prefab’s identification layers use annotation libraries 
containing images of example elements (e.g., an image 
annotated to identify a region containing a button). 
The layers then extract a library of prototypes generalized 
from these annotations (e.g., generalizing the example 
button to describe all buttons of the same type). A prototype 
describes an arrangement of pixels, and the layers use two 
high-level strategies to identify elements based on 
prototypes: (1) exactly matching prototype pixels against an 
image, or (2) modeling prototype background and then 
differencing pixels in an image to identify foreground 
interface elements. Prototype parts can be features (defined 
as exact patches of pixels) or regions (defined as methods 
for painting areas of variable size, such as gradients or 
repeating patterns). The top of Figure 3 illustrates three 
prototypes selected to show a range of complexity.  

The simplest are exact-match prototypes, which consist of a 
single feature exactly matching the pixels of an example. 
These do not generalize, but many interface elements also 
do not vary in appearance (e.g., checkboxes, icons, radio 
buttons). For example, the left prototype in Figure 3 
identifies all standard checked Windows 8 checkboxes. 

A more complex slider prototype uses multiple parts to 
account for the variable length of the slider and the variable 
thumb position. Five parts characterize the slider’s thumb, 
the left and right ends of the trough, and a repeating trough 
pattern on either side of the thumb. The middle prototype in 
Figure 3 was generalized from the illustrated example and 
identifies all standard Mac OS X sliders. 

  

  
 

Exact-Match Prototype
Windows 8 Checkbox 

Five-Part Prototype 
Mac OSX Slider 

Nine-Part Prototype 
Windows 8 Button 

 
Figure 3: Prefab uses examples of interface elements to 
generalize prototypes of the appearance of families of widgets. 
Building from a library of these prototypes, we interpret 
which elements to replace with Sliding Widgets as well as 
their sliding orientation. Our novel methods are shown in red, 
while Prefab’s existing methods are in black. 



 

 

A nine-part prototype adds the ability to model background 
and use runtime pixel differencing to identify unpredictable 
foreground elements. For example, the prototype at the 
right of Figure 3 identifies all Windows 8 default buttons 
and any text or icons painted over their gradient 
background. It was generalized from the illustrated example 
button. Nine-part prototypes are first identified by matching 
their four corners and four edges. Prefab then uses the 
interior content region to identify elements painted over the 
background. Discussion of content regions, including how 
Prefab generalizes a background from examples that 
include foreground elements, is available in [11]. 

Interpreting Replacement and Sliding Widget Direction 
We have described how Prefab identifies a hierarchy of 
elements, but any hierarchy is by itself insufficient for most 
applications. In our case, Sliding Widgets requires metadata 
indicating (1) which elements should be replaced and 
(2) the direction in which a replacement Sliding Widget 
should slide. To obtain these, we combine automated 
interpretation of Prefab’s recovered hierarchy with social 
annotations, wherein people interactively correct erroneous 
behavior. Interfaces are procedurally generated, so their 
pixel-level appearance rarely changes. Familiar interfaces 
will therefore be thoroughly annotated and “just work”. 
But our combination of automatic interpretation and social 
annotations allows end-users or designers to interactively 
correct newly-released or niche interfaces. 

For manual annotation, any node can be tagged with a type 
of Sliding Widget to replace it (e.g., sliding button, sliding 
dropdown menu). Nodes can be explicitly tagged do not 
replace, or can be implicitly unavailable for replacement 
due to replacement of an ancestor. For sliding direction, 
elements can be tagged left, right, up, down, or a diagonal 
direction (e.g., down right). Finally, for multi-function 
Sliding Widgets such as the spinner replacement in 
Figure 3, we allow horizontal and vertical tags. We store 
tags using support provided by Prefab Annotations, and tag 
nodes using two layers. Specifically, for each annotation we 
store a path descriptor based on properties of an element, 
its location in the hierarchy, and its ancestors. At runtime 
the layer retrieves annotations by matching against each 
node’s path. Thus, the first layer tags the set of nodes 
annotated with replacement metadata, and the second 
specifies the direction for those nodes. 

Social annotation can be sufficient in a broad deployment 
that leverages social mechanisms, but can be expedited by 
even minimal automation. We currently include a layer that 
automatically tags nodes with a sliding direction. This layer 
iterates over elements marked for replacement and assigns 
directions in a rotating clockwise manner. We ignore 
elements in dense layouts, and leave widgets in sparse 
layouts with a default left or horizontal direction. Finally, 
the layer ignores any element with a direction assigned by 
the preceding exact-match layer, thus allowing end-users or 
designers to manually override the default. Our later section 

on Examining Sliding Widgets presents examples of 
interfaces where it is desirable to override sliding direction 
due to unexpected usability issues in real-world interfaces. 

MODELING AND LINKING WIDGET STATES 
The previous section describes how Prefab interprets 
elements within a static frame. Because our methods 
modify interfaces at runtime, defining the behavior of 
Sliding Widgets requires monitoring an interface many 
frames per second and then programmatically redirecting 
input to manipulate that interface. For example, when a 
person activates a Sliding Widget by moving its thumb, the 
system must send a click to the underlying original element. 
And if that button or any other widget then becomes 
disabled in response to the interaction, the Sliding Widgets 
should mirror this change in their behavior and appearance.  

The solution to these challenges comes from the insight that 
a change in appearance of an interface element corresponds 
to an underlying change in widget state. We therefore 
model widget dynamics using finite state machines. 
Although a widget may not be explicitly implemented with 
an internal state machine, the event-driven nature of 
interfaces means such a state machine is generally implicit 
(i.e., widgets exist in some state and change that state in 
response to interaction events). State machines offer an 
explicit model of the dynamics of interface elements, which 
we use to provide getters and setters for monitoring and 
manipulating widgets. Specifically, getters allow 
enhancements to subscribe to events fired when there is a 
traversal across one or more edges (e.g., signifying 
rollovers, clicks, drags). Setters can prepackage logic that 
sends input to an element, transitioning it to a new state. 

The critical challenge in modeling state machines is that 
there are both: (1) a wide variety of existing widgets to be 
translated into Sliding Widgets, and (2) several types of 
Sliding Widgets, each requiring a different mapping. 
A naïve approach would therefore create a combinatorial 
explosion translating each widget to each Sliding Widget. 
We instead decouple parts of the translation using an 
approach similar to a Model-View-Controller pattern. 
A state model is the model, a Sliding Widget or other 
enhancement the view, and a linker the controller that 
synchronizes state models of the original interface with the 
representations used in a pixel-based enhancement. Figure 4 
illustrates this decomposition.  

     
Figure 4: Abstract State Models and Linkers decouple the logic
of translating widgets to Sliding Widgets, thus avoiding the
combinatorial explosion of direct translation. 



 

 

Abstract State Models 
An abstract state model is defined as a combination of 
states and transitions describing the behavior of a class of 
widgets. This state model is then parameterized with 
prototypes describing the appearance of a particular widget 
in each of the states. For example, Figure 5 presents two 
state models parameterized to represent behavior for the 
Windows 8 default button and checkbox. The same models 
could be parameterized with different prototypes to 
represent different buttons or checkboxes. 

Abstract state models build on Prefab’s rudimentary 
support for observing a transition from one prototype to 
another [10]. Each transition is defined by a prototype that 
initiates the transition, a prototype that triggers the 
transition, and a set of constraints. At runtime, Prefab 
checks for transitions that are in progress and could be 
triggered subject to their constraints. After given the option 
to trigger, these transitions are then given the option to 
expire (i.e., removed from the set in progress). Finally, 
the current frame is examined for prototypes that initiate 
new transitions, which are added to the set in progress. 

An abstract state model composes multiple transitions, each 
defining an edge between two states. States are then 
parameterized by providing the specific prototypes used in 
each transition. There are several potential approaches to 
parameterizing a state model, including interactive 
authoring tools or more automated methods that passively 
observe interaction with interfaces, choose among possible 
state models, and populate each state. We currently use an 
authoring tool, leaving integration of more advanced 
methods for future work. Importantly, our methods separate 
modeling of state machines from recognition of widget 
appearance, allowing development of abstract models that 
can be used across a variety of concrete widgets. 

At runtime our system maintains a set of parameterized 
state models that are potentially in progress. This set is 
populated using the active transitions monitored by Prefab. 
The triggering of a transition invokes a traversal across the 
corresponding edge in a state model. When a transition 
expires, its state model is given the option to expire, 
denoting a widget is no longer present in the interface. 
Abstract state models include setters for transitioning 
between states via manipulation of the interface. 

Specifically, the setter logic executes input events necessary 
for traversing edges in a state model. For example, the state 
model in Figure 5 packages a “click” function that sends 
mouse down and up events to the source application. This 
code is defined in the abstract state model, requiring only a 
single definition for any widgets that share this behavior. 

Linkers 
A state model defines the dynamics of an element, but those 
dynamics also need to be related to a Sliding Widget. We 
therefore provide linkers. Specifically, a linker (1) listens 
for edge traversals in a state machine and updates the 
Sliding Widget accordingly, and (2) listens for interaction 
events fired in a Sliding Widget and updates the state 
model. A single linker can be implemented for an abstract 
state model paired with a class of Sliding Widgets. 
For example, Figure 6 illustrates a linker that connects a 
button abstract state model to a Sliding Button, highlighting 
the flow of events passed between them.  

Upon observing an interaction with a Sliding Widget, a 
linker can induce arbitrarily complex state machine 
manipulations. For example, our linker in Figure 6 executes 
a range of actions depending on the observed Sliding 
Button interaction. The simplest case is when a user touches 
down on a Sliding Button and the linker induces a mouse 
rollover, traversing a single edge in the state machine. 
In contrast, confirming activation of a Sliding Button 
induces multiple edge traversals. The linker sends a click to 
the underlying button, which transitions it first to the state 
machine’s pressed state and then back to the rollover state. 
Importantly, the separation of a linker from the Sliding 
Widget allows designers to create Sliding Widgets without 
a need to implement complex input redirection logic. 

Although a state model can be manipulated by sending 
input events to the source interface, its state does not 
change until the underlying element’s appearance changes. 
The length of this delay depends on time it takes to process 
input, and could be problematic for Sliding Widgets or 
other enhancements that want to provide instant visual 
feedback after an interaction. To address this problem, each 
active state model maintains pointers to two states: the 
current state and the expected state. The expected state 
reflects the state to which the machine is expected to 
traverse, but has not yet visualized. When a state model is 

 

Button State Machine 
Windows 8 Default Button 

Checkbox State Machine 
Windows 8 Default Checkbox 

Figure 5: Abstract State Models are parameterized with 
prototypes describing the appearance of a widget. These two 
state models are parameterized with prototypes generated 
from Windows 8 Default Buttons and Checkboxes. 

 

Figure 6: Linkers synchronize state models and Sliding 
Widgets. These two snippets are from a linker that 
synchronizes Sliding Buttons with mouse-based buttons. 



 

 

manipulated via a setter, it first sets its expected state and 
then sends input to the underlying widget. A state model 
also fires an event when its expected state changes 
(e.g., onRolloverExpected in Figure 6), allowing a linker to 
provide instant updates to the Sliding Widget. 

MAPPING WIDGET APPEARANCE 
We have presented methods for modeling existing widgets, 
but there is also a challenge in styling the appearance of the 
runtime enhancement. Because our Sliding Widgets overlay 
existing interfaces, it is important that they maintain a style 
that is consistent with the underlying interface. 

We address this problem with mappers, which 
automatically style Sliding Widgets consistent with their 
underlying original interface. In our solution, we first 
separate Sliding Widget style from content as in Hudson 
and Smith [19]. We also use customizable parts as in 
Hudson and Tanaka [20]. We then use mappers to translate 
Prefab prototype parts to the Sliding Widget parts. 
Prototypes model the pixel-level appearance of existing 
elements, and so we extend their usage from identification 
to also informing the rendering of new widgets. 

Decomposition of a Sliding Widget into 
customizable parts is straightforward. 
Parts render fixed bitmaps or repeating 
patterns, such as simple repeating colors 
or more complex gradients. The pixels 
used in these parts are parameterized to 
define a specific appearance.  Here a Sliding Button is 
decomposed into eleven parts, each parameterized with a 
simple appearance. Four bitmaps define the corners of the 
slider, four patterns the edges, two patterns the left and right 
troughs behind the thumb, and a single bitmap for the 
thumb itself. We use similar but more complex models to 
render other Sliding Widgets, such as the Sliding Spinners 
and Sliding Dropdown Menus in Figure 1. 

Designers can leverage these decompositions to manually 
style Sliding Widgets, but our mappers expedite this 
process with methods for styling Sliding Widgets consistent 
with their underlying original interface. Mappers can be 
designed for reuse among many prototypes or for a specific 
prototype. They accept source prototypes and output 
Sliding Widgets with their parts parameterized based on 
those prototypes. The following examples illustrate three 
mappers currently in our framework: basic one-part 
mappers, nine-part mappers, and multi-prototype mappers. 

One-part mappers translate one-part prototypes into Sliding 
Widgets. An example we have implemented uses two 
colors extracted from the prototype to define chrome in a 
Sliding Button. Specifically, we render the corners and 
edges of the Sliding Widget using the darkest color in the 
prototype. We then render the trough by extracting the 
lightest color in the prototype and creating a gradient from 

the darkest color to the lightest color.  The above example 
shows this one-part mapper applied to a save button. 

 
Nine-part mappers obtain more complex renderings using 
Prefab’s nine-part prototypes. This is an example nine-part 
mapper that translates the appearance of a Windows 8 close 
button. It maps the corners and edges of the button 
prototype to the Sliding Widget thumb. It then obtains a 
recessed look by painting the trough using a reverse of the 
gradient obtained from the prototype content region. 

The previous two examples use parts from a single 
prototype to parameterize the appearance of a sliding 
widget. It is also possible to perform more complex 
mappings using multiple prototypes. Here we show an 
example multi-prototype mapper where we map from 
prototypes that define the two arrows of a spinner. The 
content regions of those prototypes provide the up and 
down arrows, which are mapped into the thumb of the 
slider. Our associated video shows additional Sliding 
Widgets created using multi-prototype mappers, including a 
Sliding Checkbox created from two one-part prototypes that 
describe the appearance of a Windows 8 checkbox in its 
checked and unchecked states.  

EXAMINING SLIDING WIDGETS IN THE WILD 
Sliding Widgets and other techniques addressing the fat 
finger problem are often designed, discussed, and evaluated 
using fields of abstract widgets or other limited testbeds. 
Because our implementation provides the ability to deploy 
Sliding Widgets, we sought to determine what insights we 
could gain from examining them in real-world interfaces. 
Our findings identify three challenges: (1) the challenge of 
supporting both area and point cursors within the same 
interface, (2) limitations of sliding in complex interfaces, 
and (3) limitations of replacing individual widgets. 

Challenges with Supporting Area and Point Cursors 
A major challenge is defining Sliding Widgets that work 
within the same interface as mouse-based widgets. Consider 
the spinner shown in the bottom-center of Figure 7, which 
illustrates a common scenario where a spinner controls the 
contents of an adjacent textbox. The spinner can be 
replaced with a Sliding Widget, but it then becomes 
difficult to manipulate the textbox directly. This is because 
Sliding Widgets leverage the entire contact area of touch 
input, but the touch here also overlaps the text field for 
which area cursor input is undefined. Sliding Widgets can 
resolve this ambiguity by alternating their orientation for 
disambiguation among other adjacent Sliding Widgets, but 
this strategy does not resolve the scenario where a touch 
area overlaps both a Sliding Widget and an element 
designed only for point-cursor interaction. 



 

 

Sliding Widgets were unusable without the ability to 
disambiguate between pointing and sliding, so we 
developed a strategy for gracefully degrading from a 
contact area to a standard point cursor. More concretely, 
when a person touches a point-cursor element, we pass the 
standard touch point to the underlying interface (typically 
computed as the contact area centroid). However, when a 
person touches a Sliding Widget, our overlay will send the 
entire contact area to the widget. In dense layouts, we 
employ an enhanced implementation of Vogel and 
Baudisch’s Shift to enable fine cursor adjustment [38]. 
After a touch event, Shift creates a callout showing a copy 
of the occluded screen area and places it in a non-occluded 
location. Shift was designed for point-cursor interaction, so 
we extend it to support area cursor input. Our goal is to 
make it possible to swiftly activate a Sliding Widget 
without eliminating precise control of a pointer. Thus, the 
core challenge in this task is to separate fine-tuning input 
from the dragging needed to activate a Sliding Widget.  

Figure 7 storyboards our solution for disambiguating 
elements in dense layouts. When a user dwells over an 
element, we present a callout showing the occluded screen 
area. We then distinguish fine-tuning from dragging using a 
threshold on input velocity. Specifically, slow movements 
below the threshold are categorized as fine-tuning, and fast 
movements are treated as drags. Fine-tuning moves the 
position of a point cursor over mouse-based targets, and for 
any Sliding Widgets under the point cursor it sends touch 
down events. Alternatively, dragging only manipulates 
Sliding Widgets. The drag moves a Sliding Widget’s thumb 
in the direction of the drag, allowing activation while hiding 
that input from any other point-cursor targets.  

Limitations of Sliding in Complex Interfaces 
Sliding Widgets use the metaphor of 
real-world sliding manipulations, but it 
is unclear how this applies to certain 
elements. One example is in hierarchical widgets, where an 
interactive element contains an interactive child element. In 
this screenshot of a panel in Adobe Photoshop, each row is 
clickable (to select a layer) along with its inner buttons 
(to toggle layer visibility). Unfortunately, this has no clear 
Sliding Widget analog.  Sliding Widgets could potentially 
be nested in a larger Sliding Button, but this would be 
awkward when sliding either the outer or inner widgets.  

We also found limitations of the sliding metaphor in the 
context of groups of related elements. Moscovich et al. 
demonstrate the promising feature of Sliding Widgets 
where a list of elements is selected in a single stroke. Our 
associated video also demonstrates an example of this 
interaction in the context of a Skype dialog. However, in 
most real interfaces where multiple elements are frequently 
toggled together, developers provide a “select all” toggle. 
In other cases, elements tend to be unrelated or infrequently 
toggled, leaving single stroke interactions undesirable.  

We believe this problem is largely due to conflicts between 
Sliding Widget behavior and the intentional design of 
interfaces for point cursors. More concretely, it may be 
possible to redesign an entire interface to exploit the 
advantages of single-stroke sliding interactions, but only at 
the obvious cost of needing to overhaul much of the design. 
Dixon et al. raised a similar tension between target-aware 
pointing and existing pointing-based interfaces [8], so 
perhaps this problem surfaces a larger conflict present in 
designing surface-level modifications to existing designs. 

Limitations of Individual Widget Replacement 
Our implementation mostly replaces individual elements 
with individual Sliding Widgets. However, this approach 
can introduce conflicts when multiple widgets are related.  

We partially anticipated this in our implementation of a 
Sliding Spinner. A naïve implementation would replace 
each button in the spinner with a Sliding Button and 
alternate their direction to help with disambiguation. 
However, this can conflict with a person’s expectations of 
the interface if the chosen sliding direction is different than 
the semantic direction of the spinner. For example, the 
spinner in Figure 1 adjusts the numerical value in its 
textbox, and sliding horizontally may seem less appropriate 
than sliding vertically. The problem is magnified if the 
arrows from the original spinner are mapped into the 
appearance of the Sliding Widget. We addressed this 
problem with the Sliding Spinner that understand the 
relation between the two buttons and behaves appropriately.  

While our strategy for grouping multiple 
related widgets works for spinners, the 
strategy is much more difficult to implement 
for larger collections of related widgets. For 
example, consider this enhanced Windows 8 
Calculator interface. It includes a typical grid 
of buttons, but replacing each individual button yields an 
interface that is jarring and difficult to use. The calculator’s 
original layout is relatively dense, so it seems useful to 
alternate sliding directions. But then a person has to 
carefully inspect each button to understand how to slide it. 
Instead, the entire panel of buttons should be replaced with 
a Sliding Widgets optimized for these types of grid layouts. 

This problem suggests that a more global understanding of 
interface layout is necessary for replacing some elements. 
One possible strategy is to employ a mechanism similar to 

 
Figure 7: We modify Vogel and Baudisch’s Shift [38],
employing pointing when the user fine-tunes and contact
area-based touches when the user drags. 



 

 

Nichols et al.’s Smart Templates for replacing entire groups 
of controls [27]. This technique uses parameterized 
templates to specify when different conventions might be 
applied. Our approach to replacing spinner widgets can be 
seen as an initial example of this, but we imagine there is an 
opportunity to extend this idea to more sophisticated 
templates capturing a variety of conventions and semantics. 

DISCUSSION AND CONCLUSION 
Although we describe our pixel-based methods in the 
context of implementing Sliding Widgets, our modeling of 
state and our approaches to styling widgets using prototype 
parts can enable and inform a variety of future 
enhancements. For example, other enhancements can 
directly re-use our state models. An enhancement to support 
crossing-based widgets on hybrid pen and mouse devices 
could use our same state models, implement new linkers 
relating their crossing widgets to our models, and style their 
widgets using our techniques. Even more complex 
enhancements might go beyond replacing individual 
widgets, using our models to drive entire new interfaces 
automatically generated by a system like Supple [15]. 

We described how our state models provide getters and 
setters for widget state, encapsulating low-level details 
required for monitoring and manipulating widgets. These 
turned out to be additionally beneficial because they 
provide an API that is similar to the API of the underlying 
toolkit itself. For example, our checkbox state model 
provides a familiar getChecked() method, which hides 
details of what states and prototypes the model uses to 
represent the checkbox. We believe that there is a rich 
opportunity for future work that investigates a more general 
set of semantic views that encapsulate pixel-based methods. 
The goal of these views would be to provide developers of 
pixel-based enhancements with a higher-level toolkit that is 
more similar to existing interface toolkits. For example, a 
getLabel() method on a semantic view of a button would 
manage the details of obtaining the button’s prototype, 
recovering its content, and processing those pixels to 
recover its text. 
Our linkers automatically map Sliding Widget interactions 
into a sequence of mouse events to manipulate the 
underlying interface element. Current windowing systems 
are not designed to support this type of behavior. In 
particular, the overlay and the underlying enhancement 
must share the same input stream, which requires blocking 
input from one or the other during different stages of an 
interaction. This limitation also makes it difficult to support 
simultaneous manipulation of elements (e.g., Moscovich 
et al. suggest using an area cursor to drag two sliders at the 
same time). Deeper exploration of new input management 
frameworks is an opportunity for future work. For example, 
a framework might provide multiple input streams, 
separating live input from redirected input. 

We implemented several basic linkers for synchronizing 
Sliding Widgets and state machines in most interfaces, but 

we imagine developers will extend these or create more 
sophisticated linkers tailored for specific applications.  As 
one motivation, our example linker maps touches to mouse 
rollovers, thus making it possible to view tooltips or other 
rollover responses in existing interfaces. But Moscovich 
et al. also demonstrated more complex responses to touch 
events with their action-preview-on-touch behaviors [24]. 
In their design, touching a button displays a preview of the 
action it will perform if activated. Future work might 
therefore examine linkers that execute these previews by 
monitoring and manipulating multiple state models. 
Importantly, our Model-View-Controller pattern for 
separating linkers from state models and Sliding Widgets 
makes it possible to define custom behaviors without 
modifying state model or Sliding Widget code. 

Our application is the first practical general-purpose 
implementation of Sliding Widgets. There is nearly always 
a fundamental gap between the knowledge that can be 
gained in lab studies versus the implications of this 
knowledge for real-world contexts, and we believe this 
work narrows the gap for Sliding Widgets. We are 
exploring the best way to deploy our application on 
Windows 8 hybrid devices to further bridge the gap from 
the lab to the field. We also envision tools accompanying 
the deployment where developers can gather logged usage 
data to provide insight into real-world challenges 
(e.g., testing alternative designs, visualizing problems 
reported by end-users of pixel-based enhancements). 
Our hope is to help catalyze interaction research in escaping 
the lab, putting it into the hands of end-users who stand to 
benefit from the field’s rich innovation.  
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